科技动态 Case
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室
说明: 原创 CINNOCINNO Research产业资讯,通过与美国哈佛大学、麻省理工学院 (MIT) 和英国的斯特拉斯克莱德大学及巴斯大学合作,谢菲尔德大学电子与电气工程系的Wang Tao教授牵头接受了一项资金达190万英镑,旨在开发新型外延技术的项目。据介绍,该项目希望将微型激光二极管 (micro-LD) 和晶体管集成在一个芯片上,用于微型显示和可见光通信 (VLC,Visible Light Communication)。根据韩媒Semiconductor Today报道,众所周知,微型显示器广泛用于智能手机、智能手表、增强现实 (AR) 和虚拟现实(VR)设备。VLC技术不仅有机会提供比现有WiFi或5G更大的带宽和效率,而且还可用于普通射频信号无法工作的场所,例如飞机、医院、水下和危险环境。这两种技术的关键组成部分是基于III族氮化物的可见光发光二极管(LED)。相比较于普通的发光二极管,使用激光二极管 (LD)可以实现更高的分辨率、速度和效率。谢菲尔德大学申请的该项目由英国工程和物理科学研究委员会(EPSRC)资助,总共耗资190万英镑。该项目主要用于开发一种将微型半导体光源和晶体管集成在单个芯片上的新方法。“对微型显示器越来越大的需求正在推动市场对超高分辨率和超高效率性能的要求,”谢菲尔德大学先进光电子学院的Wang Tao教授指出,“但是现有技术还无法应对这种需求,我们需要开发一种颠覆性的新技术。”“与任何现有的光电子制造工艺不同,我们的研究将探索一种完全不同的方法。这种方法希望将微型激光二极管(Micro-LD)和高电子迁移率晶体管(HEMT,High-Electro-Mobility Transistor)集成在单个芯片上,其中每颗Micro-LD由独立的一个HEMT驱动,”他补充道。到2025...
案例名称:
说明: 五、封测  当前大陆地区半导体产业在封测行业影响力为最强,市场占有率十分优秀,龙头企业长电科技/通富微电/华天科技/晶方科技市场规模不断提升,对比台湾地区公司,大陆封测行业整体增长潜力已不落下风,台湾地区知名IC 设计公司联发科、联咏、瑞昱等企业已经将本地封测订单逐步转向大陆同业公司。封测行业呈现出台湾地区、美国、大陆地区三足鼎立之态,其中长电科技/通富微电/华天科技已通过资本并购运作,市场占有率跻身全球前十(长电科技市场规模位列全球第三),先进封装技术水平和海外龙头企业基本同步,BGA、WLP、SiP 等先进封装技术均能顺利量产。  封测行业我国大陆企业整体实力不俗,在世界拥有较强竞争力,美国主要的竞争对手为Amkor 公司,在华业务营收占比约为18%,封测行业美国市场份额一般,前十大封测厂商中,仅有Amkor 公司一家,应该说贸易战对封测整体行业影响较小,从短中长期而言,Amkor 公司业务取代的可能性较高。  封测行业位于半导体产业链末端,其附加价值较低,劳动密集度高,进入技术壁垒较低,封测龙头日月光每年的研发费用占收入比例约为4%左右,远低于半导体IC 设计、设备和制造的世界龙头公司。随着晶圆代工厂台积电向下游封测行业扩张,也会对传统封测企业会构成较大的威胁。  2017-2018 年以后,大陆地区封测(OSAT)业者将维持快速成长,目前长电科技/通富微电已经能够提供高阶、高毛利产品,未来的3-5 年内,大陆地区的封测企CAGR增长率将持续超越全球同业。
说明: 天津大学生命科学学院常津教授团队将纳米技术与光遗传学技术结合,设计了一种新型的纳米抗肿瘤光遗传操控系统——研究人员向生物体表面照射脉冲式近红外光,光线穿透深层组织,被稀土纳米颗粒接收转换为可见蓝光,进而激活光感蛋白,最终精准触发肿瘤细胞凋亡。这一系统的成功研发,有望提供一种恶性肿瘤“微创治疗”新方式。介绍该成果的论文《近红外光激活的上转换光遗传学纳米系统用于肿瘤治疗》已发表在纳米领域知名期刊《ACS Nano》上。   光遗传学技术是通过光学控制激活或抑制受体细胞表达光敏感蛋白,从而实现对细胞活性乃至生理功能的精准调控,为本世纪最引人关注的生物技术之一。然而,长期以来,光遗传学技术无法实现临床转化,主要因为应用时需要在活体中植入可见光光源,才能发挥作用。而植入光纤、LED灯等可见光源对生物体损伤较大,且有线设备的佩戴限制了生物体的活动。  常津教授团队设计的这种纳米抗肿瘤光遗传操控系统,可以巧妙地利用稀土“建造”的纳米颗粒作为细胞中的“能量中转站”,将肉眼不可见、但能有效穿透人体组织的近红外光转换为可见的局部蓝光,代替可见光源发挥功能,为光遗传技术应用起到了推动作用。  实验中,研究者向小鼠肿瘤部位注射了搭载光敏凋亡基因(Fas-Cib1+Cry2-FADD),掺杂造影剂钆(Gd)且负载荧光染料吲哚菁绿(ICG)的上转换纳米颗粒,并对小鼠进行了脉冲式近红外光照射。结果显示,照射4周后,小鼠肿瘤体积及重量显著减小(200mm3,0.25g),并展示出更长的存活期(8周)。“稀土纳米颗粒结合光遗传学技术用于肿瘤靶向可视化治疗,具备微创性、深层组织穿透性及强操控性等特点。未来有望通过在颗粒中掺杂不同稀土元素及改造光感功能蛋白,实现对多重细胞通路的操控。”常津教授说。  来源:天津大学
说明: 中国科学院院士、中国科学技术大学教授郭光灿团队在量子存储领域取得新进展,该团队李传锋、周宗权等人成功研制出多自由度并行复用的固态量子存储器,在国际上首次实现跨越三个自由度的复用量子存储,并展示了时间和频率自由度的任意光子脉冲操作功能。该成果于8月24日发表在国际期刊《自然-通讯》上。  由于不可克服的光纤信道损耗,目前地面安全量子通信距离被限制在百公里量级。基于量子存储器的量子中继方案可以有效克服信道损耗从而拓展量子通信的工作距离,所以量子存储器是未来长程量子通信和量子网络的核心器件。量子网络实用化的关键指标是通信速率,而多模式复用量子存储器可以极大地提升量子网络的通信速率。对于经典的存储器,如硬盘或者优盘等,其一个存储单元一次只能存储一个比特。而对量子存储器,由于具有量子相干性,其一个存储单元可以一次性存储大量的量子比特,这就是复用的概念。原则上对量子存储器的各个自由度都可以进行复用。  近年来,李传锋研究组一直致力于基于稀土掺杂晶体的复用量子存储的实验研究。2015年首次利用光子的空间自由度实现复用量子存储,存储维度数达到51维,至今保持固态量子存储维度数最高水平[Physical Review Letters 115, 070502 (2015)],复用时,可以把每一维作为一个模式,那么空间自由度就有51个模式。同年,利用光子的时间自由度,实现了100个模式的确定性单光子量子存储,至今保持复用固态量子存储的模式数最高水平[Nature Communications 6, 8652 (2015)]。  为了进一步提升量子存储器的复用能力,研究组创新性地采用多自由度并行复用的存储方案。比如在第一个自由度有M个存储模式,第二个自由度有N个模式,第三个自由度有P个模式,则量子存储器的总复用模式数为各个自由度模式数的乘积,即M*N*P。研究组选择光子的时间、空间和频率自由度进行...
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务