科技动态 Case
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

重稀土元素——镝之简介

日期: 2018-09-07
浏览次数: 89

如果你不在某些专门的领域进行工作或研究,你就很少有机会了解镝。镝作为17种稀土化学元素之一,是首次由法国化学家Paul-émile Lecoq de Boisbaudran在1886年当做氧化铒的杂质被发现的。然而,直到20世纪50年代都一直不能生产纯净的镝。虽然并非所有的稀土元素都是稀有的,但镝却堪称真正的稀有。镝的英文名来自希腊文“dysprositos”,原意为“难以取得”。

  1. 镝的性能

  镝呈银白色,微毒,尚无已知的生物用途。像其它镧系元素一样——原子序数从57到71的15种化学元素,是在独居石和氟碳铈矿中被发现的,但少量存在于磷钇矿和褐钇铌矿中。正如稀土投资新闻(Rare Earth Investing News)曾指出的,镝等重稀土与轻稀土不同,在中国取消出口配额后,后期走势上不明朗。不过,总体认为,重稀土将保持短缺。

  2. 镝的应用

  据皇家化学学会(Royal Society Of Chemistry)称,在过去,镝的应用领域不像其他稀土元素一样广泛。作为一种纯净的金属,它可以与水和空气反应,因此很难处理。不过,近年来由于镝广泛用于钕基磁性材料,所以情况出现了一些变化。在同样的重量和体积下,稀土的磁性比其它类型材料的磁性更强。特别地,钕铁硼的磁性是最强的,正在广泛应用于许多现代科技领域,如发动机、风力涡轮机组中的发电机以及电动汽车等。RSC认为,镝的主要用途是在钕基磁性材料中,镝有助于钕基磁材在高温下的作用,因为在高温下磁性材料可能会消磁。该机构表示,镝的需求正在迅速增长。

  镝除了在磁性材料中的应用之外,它还用于卤化物灯中的碘化镝,以及用于核反应控制棒的氧化镝镍陶瓷。因为镝容易吸收中子,并且吸收中子之后不膨胀或收缩,因此镝非常适合于核领域的应用。

  3. 供应风险

  镝越来越难以获得。事实上,近年来,为规避镝的供应风险,许多制造商在寻找其他方法来减少对它的依赖。例如,2013年日立金属公司减少了其用于汽车工业的NEOMAX磁性材料中镝的使用量。该公司表示,“镝作为最昂贵的重稀土元素之一,被用于烧结钕磁铁中改善耐热性,但由于供应渠道单一,随着需求的增加,导致了供应短缺以及价格上涨。汽车工业已经开始寻找减少镝用量的方法或寻找它的替代品,特别是在烧结钕磁铁中的应用。不只是日立金属公司担忧镝的供应,据美国国会研究服务中心2013年报告大纲记载,美国国会也开始寻求改善全球稀土供应链的解决方案了。

  4.中国对稀土市场的影响

  中国作为全球最大的稀土生产商,也是全球最大的镝生产商,尽管最近有报导称中国对稀土市场的控制将削弱,但中国仍占有全球最大的稀土生产份额。由于混合动力车、电动汽车以及风力涡轮机中的电动机中所用电池所需磁性材料的需求旺盛,对镝供应可能会出现短缺的担忧越来越强烈。另外,中国已开始严厉打击非法稀土矿业生产。赣州政府表示,“通过对非法生产企业的治理整顿,自去年6月份以来大约有233家非法稀土矿山被取缔。用这种方法,非法矿山的生产得到了遏制。”但Stormcrow资金公司的Jon Hykawy先生则认为,中国完全取缔非法稀土矿山生产是很困难的。可以肯定的是,对稀土感兴趣的投资者将密切关注中国以外镝生产商的动态。


案例中心 / Case
浏览次数: 122
发布时间: 2018 - 09 - 07
氯化钇化学式YCl3。分子量 195.26。有光泽的白色叶状晶体。其一水合物为无色晶体,160℃失去1分子水。其六水合物为无色或略带红色 晶体,相对密度2.1818,100℃失去5分子水。溶于水、乙醇、吡啶。以往报道显示一定浓度的氯化钇可引起人淋巴细胞DNA分子损伤和对成纤维细胞生长有抑制作用,但也有报道认为氯化钇对红细胞膜无损伤作用,表明氯化钇对不同细胞作用有差异。人皮肤的表皮细胞最易与环境中的氯化钇直接接触,但氯化钇对表皮细胞的影响报道较少。  氯化钇的用途是什么?  1. 氯化钇可用于制备树脂表面复合涂层。如 一种从废弃荧光粉中回收稀土元素 钇并制备树脂表面复合镀层的方法,包括以下步骤:  a、利用筛分法将破碎后的荧光粉与杂质分离开,通过20目、60目、100目、200目网筛逐步筛分后,收集200目筛下物,筛下物占未筛前粉体重量的99.9%以上;  b、将步骤a得到的筛下物加入到酸和双氧水混合液中,反应一段时间,然后进行过滤,滤液中含有稀土元素;  c、将步骤b得到的滤液采用磷系萃取剂进行萃取,分三级萃取后,萃取液中只含有稀土元素;  d、将步骤c得到的含有稀土元素的萃取液用盐酸进行反萃,反萃液中为稀土元素钇,如果萃取液中还含有稀土铕,则稀土铕在萃余液中;  e、将步骤d得到的反萃液加入氨水进行中和至溶液刚有少量白色沉淀产生,溶液主要成份为氯化钇,将氯化钇溶液蒸发浓缩或蒸干再配制成一定浓度后,逐滴加入到配有分散剂的碳酸氢铵溶液中,生成前驱体;  f、将步骤e得到的前驱体过滤、烘干后,进行煅烧,研磨后得到纳米氧化钇粉末;  g、将步骤f得到的纳米氧化钇粉末加入至配有分散剂的电镀液中制成复合电镀 液,电镀至树脂表面。  2. 氯化钇对人表皮细胞作用:钇为稀有元素,在低浓度对表皮细胞体外增殖无影响。氯化钇对紫外线诱导表皮细胞凋亡有一定影响,研究结果显示加入低浓度氯化钇 0....
浏览次数: 171
发布时间: 2018 - 09 - 07
浏览次数: 343
发布时间: 2018 - 09 - 07
1、抛光粉粒径多大?  粒径是这个行业划分抛光粉规格的标准,粒径指的是抛光粉颗粒的直径,单位为μ,常见的抛光粉粒径从0.6——3.2不等,常用的是1.0——2.0之间,根据经验可大概判断粒径小的适合做平磨用,如1.0,1.2,1.4;粒径大的适合做扫光如1.6,1.8,2.0等,最终还是要根据客户的使用习惯来定。粒径跟切削力成正比关系,粒径越大切削力越强,反之越小。每家抛光粉都有几种粒径,但粒径分布的均匀度就需要生产水平把控了,生产水平高可以尽可能的提高标准粒径所占比重,减小最大和最小粒径的范围以及占比。比方说有些产品标号是1.2,但实际上1.2的颗粒只占整体的百分之三十或者更少,其他颗粒参差不齐,甚至最小0.6,最大5.6,所以导致良率下降划伤增多的情况。  2、抛光粉的悬浮性怎样?  很多客户习惯性的把悬浮性作为判断抛光粉品质好坏的依据,所谓悬浮性就是抛光粉兑水搅拌均匀以后,抛光液中粉的沉淀时间长短,沉淀的快说明悬浮性不好,如果沉淀的慢则说明悬浮性好。这种观点有问题,应当根据分散效果判断悬浮性,即当抛光液静置超过两小时后产生沉淀现象,在略加搅拌的情况下是否立即恢复原来的悬浮效果,而不是产生沉淀物结块搅拌不开的情况。很多抛光粉厂家习惯通过添加悬浮剂的方式改善悬浮性,但是如果悬浮剂加的过多或者匹配不好,容易出现结胶(抛光粉凝聚)和腐蚀手的情况。我们对悬浮性非常重视,既要保证悬浮性,又要保证安全和不结胶,做了大量的实验验证。另外水质对悬浮性的影响也比较明显,纯水和自来水兑出来的抛光液对比起来非常明显,建议使用过滤装置或者用纯水兑抛光粉。(每个盖板厂都有纯水生产装置,因为超声波清洗剂需要用到纯水)  3、抛光粉的消耗大不大(耐不耐用?)  这个问题也比较常见,有些厂家会反应用品牌A的抛光粉,一台机器一个班只需要添加0.5KG,用品牌B 就需要0.7甚至更多。首先需要搞...
浏览次数: 688
发布时间: 2018 - 09 - 07
镍氢(MH-Ni)电池自1989年商业化以来,其负极材料主要是LaNi5型储氢合金。随着镍氢电池制备技术的不断提升以及性能的极大提高,其应用领域更加广泛,对电池材料性能的要求也越来越高,特别是与电池能量密度密切相关的电极材料的容量性能。电池的容量主要是由电池正、负极的容量确定的,但正极氢氧化亚镍的容量提高已经有限,因此人们就把研究重点放在了负极储氢合金的研究上面。LaNi5型储氢负极合金的实际最大容量(350 mAh g–1)已经接近其理论值(372 mAh g–1),进一步提高相当困难,因此,必需研究开发具有更高容量的新型储氢合金。近年来,高容量La-Mg-Ni系储氢合金(理论容量超过400 mAh g–1,实际最大容量390 mAh g–1)的研究获得了许多有价值的成果,已产业化并应用于制造低自放电镍氢电池和某些高容量镍氢电池。但La-Mg-Ni合金的制备工艺成本高或工艺过程复杂,主要原因在于:合金中必需含有的活泼金属元素Mg的蒸汽压高,易挥发,使得高温熔炼合金的成分难以控制,同时挥发的微细镁粉易燃易爆而存在安全隐患。国内主要使用高价值的氦气作为保护气制备La-Mg-Ni合金,日本采用熔炼La-Ni合金然后扩散Mg的二次制备工艺技术。为了解决La-Mg-Ni基储氢合金制备工艺存在的问题,包头稀土研究院储氢材料项目组经过多次试验研究发现,用Y元素替代La-Mg-Ni基储氢合金中的Mg元素,获得了同样高容量的La-Y-Ni储氢合金,可直接用真空感应熔炼法制备。2014年以来,开发的A2B7型La-Y-Ni储氢合金经合理的成分优化后实际放电容量可达到390 mAh g–1,气相储氢量可达到1.49 wt%(相应的电化学容量为399 mAh g–1),与La-Mg-Ni基储氢合金的容量相当,而且由于不含活泼的Mg元素,循环寿命更好。该系列合金已申报8项国家发...
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务