综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室
来源:中科院金属卤化物固态电解质因其宽电化学窗口、良好的室温电导率和不错的可变形性,展现出比氧化物/硫化物固态电解质更好的高电压氧化物正极适配性。然而,目前报道的大多数金属卤化物固态电解质采用高电位的锂铟合金,限制了高能量密度全固态锂金属电池的开发。同时,传统的金属卤化物固态电解质晶格中氯离子是六方或立方紧密堆积,其空间体积较小,对锂离子的传导有一定限制。因此,开发对锂金属负极稳定的新型快离子导体框架结构是发展高比能全固态锂金属电池面临的关键挑战。研究人员发现,镧系金属卤化物晶格中氯离子呈非紧密堆积形式,天然存在丰富的一维大尺寸孔道,适合锂离子的高速传输,并可通过镧空位形成连续的三维传导。研究人员选择高价离子掺杂策略来制造镧空位,得益于大尺寸高速离子通道和相邻通道间超强的交换作用,优化的金属卤化物固态电解质表现出高室温离子电导率和低活化能,优于传统氧化物和最近报道的卤化物固态电解质,可与部分硫化物电解质相媲美。基于此,研究人员组装的全固态锂金属原型电池无须负极垫层和正极包覆等额外的常用界面稳定手段,即可实现室温下百圈以上的循环。此外,研究人员还发现,镧系金属卤化物可容纳大量异种非镧系金属元素,且在此状态下仍能保持快离子传输的晶型结构特征。这一性质赋予了镧系金属卤化物框架极强的可拓展性。未来通过合理的元素设计,镧系金属卤化物固态电解质有望具备实现更高界面稳定性、更快离子传导和更廉价原...
发布时间: 2023 - 04 - 18
浏览次数:20
传统光热疗法(PTT)要在复杂的肿瘤微环境(TME)中实现肿瘤的有效热消融,需要需要将肿瘤温度严格升高超过其耐受阈值(50 °C)。然而,过度热疗引起的热扩散不可避免地会对周围健康组织造成炎症和热损伤。为了克服这一致命弱点,低温PTT将此温度通常控制在45 ℃以下。然而,一旦出现高于体温5 ℃的热疗条件,癌细胞会异常地过度表达热休克蛋白(HSPs),促进细胞内蛋白质重折叠并进一步加剧其自我保护的耐热性,这极大地损害了治疗效果。为此,哈尔滨工程大学杨飘萍团队报道了一种线粒体靶向的AFCT纳米酶,用(4-羧丁基)三苯基溴化膦(TPP)分子修饰空心介孔Fe掺杂的CeO2(简称为Fe-CeOv)纳米酶,然后担载2,2′-联氨-双(3-乙基苯并噻唑啉-6-磺酸)二胺盐(ABTS,一种POD底物),具有TME激活的协同凋亡/铁蛋白诱导能力。通过过渡金属对二氧化铈纳米酶的结构和酶活性的有效调控,一种“ETC干扰和协同辅助治疗”的策略被引入到通过缺陷工程构建的具有多酶活性(类SOD酶、类POD酶和类NADH POD酶)以放大TME特异性激活的的温和PTT抗肿瘤性能。根据密度泛函理论(DFT)计算,验证了其卓越的酶活性源于关键酶活性中心的协同机制,即Fe、Ov和Ce活性位点。在TME的双重刺激(H2O2和弱酸性)时,AFCT纳米酶的类POD酶活性的能够催化类SOD酶活性生成的H2O2产生剧...
发布时间: 2023 - 04 - 18
浏览次数:27
来源:科学网近日,兰州大学材料与能源学院教授王育华团队在长余辉材料领域取得重要研究进展,在《先进功能材料》上发表题为《首次证明Ln2+作电子陷阱提升Eu2+, Ln3+激活的余辉材料的性能——以BaZrSi3O9:Eu2+, Sm3+为例》的研究论文,首次实验证明三价共掺离子在余辉过程中作为电子陷阱。长余辉材料研究中,有许多余辉机理模型,如Matsuzawa模型、Aitasalo模型、Dorenbos-Nakazawa模型,以及Clabau模型。其中,Dorenbos-Nakazawa 模型,因其能较好地解释大多数余辉材料的机理而被业内广泛认可。然而,该模型在推断其电子陷阱、载流子/陷阱的归属方面依然缺乏足够的实验证据。一般来说,稀土掺杂的余辉材料主要是由 Eu2+与三价稀土离子Ln3+(Dy3+、Pr3+、Nd3+、Ho3+、Sm3+等)共掺得到,其中Eu2+通常被用作发光中心,而对三价共掺离子Ln3+的定义则一直不够明确。以往的许多研究中将Ln3+定义为俘获中心,但Ln3+是作为电子陷阱还是空穴陷阱仍有争议,这使得余辉材料的进一步发展和应用受到很大限制。如果Ln3+在余辉产生过程中捕获电子,它将部分转化为 Ln2+,因此在光谱中会观察到 Ln2+的特征发射。基于以上思路,王育华团队以BaZrSi3O9:Eu2+, Sm3+蓝色长余辉材料作为切入点,研究了Eu2+和Sm3+在余辉...
发布时间: 2023 - 04 - 17
浏览次数:17
来源:电子工程专辑钠、镁和钾都在争夺取代锂在未来可充电电池中的位置。现在,奥地利的研究人员在混合物中加入了一种不同寻常的竞争者:氧气。该团队制造了一种新的氧离子电池,与锂离子相比,该电池可以储存约三分之一的能量,但寿命更长。它还使用了丰富的材料,使用固体电解质意味着它不可燃。电池在200至400°C的温度范围内工作。维也纳理工大学化学技术与分析研究所研究员Alexander Schmid表示,这种更高的工作温度和更低的能量密度使其最适合固定用途,如电网或备用电力的可再生能源存储。Schmid和他的同事在《先进能源材料》杂志上报道了这种新型电池。考虑到锂离子电池的高成本和对钴和锂等地理储量有限的材料的依赖,以及其起火的可能性,锂离子电池在电网存储方面可能存在问题。液流电池将能量储存在装有低成本化学品的大型储罐中,显示出电网存储的前景,但其中使用的材料,如钒,价格昂贵。与此同时,钠硫和熔盐等其他电池技术,就像锂离子电池一样,使用挥发性液体电解质,如果设备出现故障,可能会带来安全风险。Schmid和他的同事利用两种不同氧化物的薄膜作为电极,制作了一种电池,这是目前实验室规模的小型原型。这些氧化物是通常用于固体氧化物燃料电池的陶瓷。他们选择了另一种陶瓷材料,氧化钇稳定氧化锆作为固体电解质。Schmid说:“除了氧气之外,它的工作原理实际上与锂离子电池非常相似。” 它们通过获得或失...
发布时间: 2023 - 04 - 17
浏览次数:17
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务