综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室
来源:中国高分子中国科学院长春应化所崔冬梅团队考察了对乙烯具有较高催化活性、空间位阻大小不等的4种半夹心和限制几何构型稀土催化剂1~4,对乙烯与1.1倍摩尔量AliBu3保护的5-己烯-1-醇(M2)的共聚合行为。其中,催化剂1的催化活性最高,但产生的是乙烯均聚物,催化剂2无催化活性,催化剂3和4的活性较好。此外,系统研究了极性单体10-十一烯-1-醇(M3)与乙烯共聚合过程,发现增加极性烯烃的投入量、降低乙烯压力和升高聚合温度,都可显著提高极性单体的插入率。通过 NMR、GPC 和 DSC对所得的乙烯-极性烯烃共聚物进行了微观结构、热性能分析。文章概述将一定比例的极性功能基团引入聚烯烃分子链中,可显著改善聚合物的表面性能、印染性、粘接性、黏附力以及与极性物质的相容性等一系列性能。但在通过烯烃与极性单体的配位共聚反应合成功能化聚烯烃时,极性基团易与Lewis酸性的催化剂螯合致其毒化。前期工作中,我们系统研究了稀土催化剂空间位阻与“极性杂原子辅助”共聚合机制之间的关系,发现只有使用空间位阻比较小的半夹心茂基稀土催化剂时,极性基团与烯烃双键才可同时配位到金属离子上,从而实现“极性杂原子辅助”共聚合。然而,如果将大体积基团保护的极性烯烃与乙烯进行共聚合,稀土催化剂的空间位阻如何影响其共聚合行为,还未可知。基于此,本文使用空间位阻大小不等的一系列稀土催化剂(图1),系统研究了不同空间位阻稀...
发布时间: 2024 - 07 - 17
浏览次数:1
来源:江西理工大学稀土素有“工业黄金”之称,在发光材料、磁性材料、储氢材料等中扮演着重要角色。稀土功能配合物是配位化学研究前沿,其性能丰富、结构可调,在单分子磁体、诊断造影等领域具有重要应用前景。近日,我校缪乐平博士联合浙江师范大学、中科院上海物理研究所研究团队,利用分子工程策略,在层状稀土配合物中实现了面外极化的铁电性(图1)。该研究以“Molecular Engineering Regulation Achieving Out-of-Plane Polarization in Rare-Earth Hybrid Double Perovskites for Ferroelectrics and Circularly Polarized Luminescence”为题,发表在《Angewandte Chemie-International Edition》(化学领域顶级期刊),我校为论文第一完成单位。由于层状材料容易成膜,层状铁电材料是制备铁电薄膜器件的首选。尽管最近几年有一些层状铁电配合物报道,但是这些材料大多都只显示面内极化,不利于器件应用。缪乐平等基于“铁电化学”,利用稀土离子丰富的配位模式,引入手性,构建了钙钛矿型层状手性稀土配合物,在有机组分上进行F取代,通过F取代效应成功调节实现了面外极化的铁电性。该材料不仅表现出多极轴面外铁电性和铁电-铁弹性,还具有圆偏振发光(CP...
发布时间: 2024 - 07 - 12
浏览次数:5
来源:中国科学技术大学近日,中国科学技术大学化学与材料科学学院焦淑红教授团队,联合北京大学徐东升教授、中国科学院物理研究所王雪锋研究员和苏州大学程涛教授团队,在高能量锂金属电池领域取得突破性进展。研究人员通过调控电解液在介观尺度下的锂离子溶剂化结构,设计了一种紧密离子对聚集体(CIPA)电解液,从而实现了500 Wh kg−1锂金属电池的稳定运行。相关成果以“Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes”为题,于7月8日发表在Nature Energy 杂志上。锂金属电池具有极高的理论能量密度( 500 Wh kg−1),约为目前商业化锂离子电池的2倍,因此被视为下一代高比能电池的主要技术路线。锂金属电池目前存在的主要挑战是循环寿命较短,限制了其实际应用。近年来,国内外的研究团队开发了多种电解液体系,如高浓盐电解液、局域高浓盐电解液、液化气电解液和弱溶剂化电解液等,通过优化电解液的微观结构尤其是对锂离子的第一溶剂化壳层进行设计和优化,锂金属电池的性能取得了显著提升。但是,这些电解液策略在平衡正负极稳定性方面仍然存在很多问题,使得锂金属软包电池很难同时取得高能量密度和长循环寿命。针对以上问题,作者提出了一种超越第一溶剂化壳...
发布时间: 2024 - 07 - 12
浏览次数:4
来源:X-MOL目前几乎所有的人工合成含氮有机化合物都是以工业合成氨为基础原料制备。直接以氮气作为氮源,在温和条件下合成含氮有机物具有重要的研究意义。席振峰-魏俊年研究室致力于不经过氨(NH3)直接从氮气高效、温和地合成含氮有机化合物。目前对于氮气的活化与转化研究集中在主族和过渡金属配合物领域。由于具有特殊的电子结构,稀土金属在氮气的活化与转化领域展现出了区别于主族和过渡金属的特殊反应性(Acta Chim. Sinica, 2022, 80, 1299-1308),例如部分稀土金属可以稳定(N2)3-自由基。该特征可能与稀土中心离子不易变价以及稀土-氮键较强的离子型有关。但遗憾的是,基于(N2)3-自由基的衍生化反应仅有两例报道。2011年Evans课题组通过Y-(N2)3-配合物[{{(Me3Si)2N}2(THF)Y}2(μ-η2:η2-N2)][K(THF)6]与[Et3NH][BPh4]反应,成功得到了(N2)3-被双质子化的产物[{{(Me3Si)2N}2(THF)Y}2(μ-N2H2)],其中(N2)3-转化为肼(N2H2)2-,同时作者还观察到了Y-(N2)2-配合物[{{(Me3Si)2N}2(THF)Y}2(μ-η2:η2-N2)]的生成(J. Am. Chem. Soc., 2011, 133, 3784−3787)。2019年席振峰教授课题组成功实现了稀土金...
发布时间: 2024 - 07 - 11
浏览次数:5
2952页次61/738首页上一页...  56575859606162636465...下一页尾页
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务