综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室
来源:粉体圈以碳化硅(SiC)为代表的第三代半导体材料相较前两代半导体材料,具有宽禁带、高导热率、高击穿电场、高电子饱和漂移速率等物理特性,并且化学性能稳定,有很强的耐腐蚀性,因而在核能、军工、航空航天等领域被广泛应用。但由于碳化硅材料具有硬度高、断裂韧性低的特点,在加工过程中极容易出现裂纹和损伤;同时,碳化硅表面加工的质量和精度的优劣会直接影响外延薄膜的质量及器件的性能,当前产业发展阶段,化学机械抛光技术(CMP)是业界公认实现碳化硅衬底材料全局平坦化最有效的方法,但关于它的材料去除机理、过程变量对碳化硅表面材料去除率和表面质量的影响等许多问题尚未完全研究清楚,使得碳化硅产业化进程受到一定的影响。氧化铈(CeO2)作为一种具有优异抛光性能的磨料,具有切削力强、抛光时间短、使用寿命长、抛光精度高的特点,常应用于光学玻璃器件、电视机显像管、半导体晶片等器件的抛光。氧化铈在抛光过程中化学稳定性较好,不易与抛光液中的其他成分发生不良反应,有利于维持抛光液的稳定性和使用寿命,相较于其他磨料,它对环境的影响较小,符合当下我国绿色化学和可持续发展的要求。并且有理论研究表明,氧化铈可以有效促进碳化硅的表面改性,用于化学机械抛光有极大潜力提升衬底材料的去除率和平坦化效率。但是目前国内外商业化的氧化铈磨料仍以亚微米等级为主,一方面囿于纳米级产品开发难度,另一方面也缺少基于氧化铈基抛光液用于碳化硅晶圆...
发布时间: 2024 - 08 - 23
浏览次数:57
来源:南昌大学近日,国际有序物质科学研究院廖伟强教授与赣南师范大学、苏州大学、东南大学等科研人员通力合作,在《铁电化学》的指导下,首次发现分子铁电催化,取得分子铁电体领域里程碑式进展。研究成果以“Discovery of molecular ferroelectric catalytic annulation for quinolines”为题发表在Nature Communications上,国际有序物质科学研究院博士生齐俊超为文章共同第一作者(排名第一),论文链接:https://www.nature.com/articles/s41467-024-51106-1。铁电体是一类极化方向在外电场下可重取向的电偶极活性材料,和大众熟知的铁元素无关,这类材料集铁电性、压电性、高介电性、热释电性等多种物理性质于一体,已经广泛应用于存储器、电容器、传感器、驱动器、换能器等重要器件领域。近年来,研究人员发现利用BiFeO3、BaTiO3等无机铁电体的压电效应,在超声激励下能够催化裂解水产氢、二氧化碳还原、降解有机污染物等氧化还原反应,即压电催化。然而,无机铁电体需要高温制备,使用前往往还需电极化处理;它们的声阻抗远大于溶剂的声阻抗,不相匹配的声阻抗阻碍了超声波从溶剂到铁电体表面的能量有效传递;此外,无机铁电体不溶于水等溶剂,长期超声会导致压电性能大幅下降,降低催化效率,无法持续使用。相比于...
发布时间: 2024 - 08 - 23
浏览次数:7
来源:论论资讯研究背景在现代电子设备中,金属-氧化物-半导体(MOS)器件的性能受到介电材料特性的显著影响。随着技术的发展,传统的低介电常数材料如二氧化硅已逐渐无法满足高性能设备的需求。因此,寻找具有更高介电常数(k)的新材料成为了研究的热点。氧化铈(CeO2)因其优异的介电性能而备受关注,但其应用仍面临诸多挑战。研究内容本综述详细探讨了氧化铈及其掺杂形式作为高介电常数种子层的潜力。研究首先介绍了纳米结构薄膜,特别是氧化铈作为高介电常数材料在硅基MOS器件中的应用。随后,文章回顾了氧化铈的一般性质及其作为高k钝化层的应用。研究还讨论了使用氧化铈种子层对氧化铈纳米结构特性的有益影响,并深入探讨了氧化铈面临的挑战以及通过向氧化铈晶格中掺杂三价阳离子来增强钝化特性的潜力。研究意义该论文的创新点在于系统地分析了氧化铈及其掺杂形式在提高介电性能方面的应用潜力。通过详细的研究,论文不仅揭示了氧化铈作为高介电常数材料的优越性,还提出了通过掺杂技术进一步优化其性能的可能性。这些发现对于开发新一代高性能电子器件具有重要的指导意义,有助于推动电子材料领域的技术进步和创新。 通过这篇综述,我们可以更清晰地理解氧化铈及其掺杂形式在电子材料领域的重要性和应用前景,为未来的研究和开发提供了宝贵的参考和启示。
发布时间: 2024 - 08 - 22
浏览次数:15
来源:环境人Environmentor中国稀土开采和加工行业每年排放大量低浓度(刘炜珍教授团队发展了高选择性回收低浓度稀土、稳定、可循环再生的赝电容系统,突破了稀土开采及冶炼废水中低浓度稀土回收瓶颈。该赝电容系统的关键在于:构筑了一种对稀土离子有特别亲和力且具有高吸附能力的TiO2/P/C赝电容电极;使该系统对废水中稀土离子的回收效率高达99%以上,甚至在100次循环后,仍然保持很高的循环稳定再生性能。通过原位表征揭示了电极选择性富集稀土元素过程中稀土离子与电容的微观界面作用机制:在正电压作用下,TiO2中的Ti4+被还原为Ti3O5中的Ti3+,进而捕获磷位点的电子,使其氧化为对稀土离子具有强亲和力的磷酸位点,从而提高了对稀土离子的选择性。而在反电压作用下,Ti3O5被氧化为TiO2,进而将电子转移到磷酸位点并转化为磷位点,促进稀土离子的脱附。这项研究为实现低浓度稀土资源高效回收提供理论指导与技术支撑。稀土元素被誉为“工业味精”,是重要的战略资源。我国稀土资源保有储量及保障年限不断下降,原有矿山资源加速衰减甚至枯竭。中国近几年稀土以低浓度稀土废水的形式流失多达数千吨。这些含有稀土的废水排放不仅造成了稀土宝贵资源的流失,而且也造成了环境污染。近年来,各种传统方法已被应用于从废水中回收稀土,包括离子交换、化学沉淀、膜分离和吸附。然而,这些方法具有局限性,例如废水中稀土浓度低(1. 本...
发布时间: 2024 - 08 - 21
浏览次数:37
3076页次79/769首页上一页...  74757677787980818283...下一页尾页
Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
犀牛云提供企业云服务