来源:X-MOL
析氧反应(OER)是燃料电池、电解水制氢、可充电金属-空气电池、光催化水分解等新能源技术的关键反应之一,然而由于其缓慢的动力学过程导致OER反应效率的提升一直面临挑战。近年来,如何开发并调控活OER催化剂的活性已经成为材料、化学和能源领域的研究热点之一。
近年来,对电催化OER目前研究主要提出了两种主要反应机制,包括传统的吸附物演化机制(AEM)和晶格氧介导机制(LOM)。然而,由于晶格氧的氧化还原和迁移,催化剂在LOM过程中通常会发生很大程度的表面重构,明显降低催化剂稳定性。对于AEM 过程,催化剂通常表现出相对较高的稳定性但活性较低。因此,实现AEM和LOM之间的灵活调控能够实现催化剂活性和稳定性的协同优化,对于开发高效OER催化材料至关重要。然而目前对于特定材料来说,一般其OER机制是固定的,通过保持其化学成分不变,仅调整缺陷含量或引入晶格应力来实现AEM和LOM的灵活仍然是一个挑战。
在该挑战下,香港理工大学黄勃龙教授(点击查看介绍)与兰州大学席聘贤教授(点击查看介绍)团队、严纯华院士(点击查看介绍)团队合作,在仅调节LaxSr1-xCoO3-δ(LSCO)钙钛矿中氧缺陷含量来实现OER 机制的灵活调控,提出了浓度锁定效应,并成功以氧缺陷含量为描述符,系统地建立了材料氧缺陷浓度、OER活性、OER机理三者间的构效关系,较为全面地阐明了氧缺陷关联的析氧过程。实验通过一种普适性的球磨方法,利用机械力化学方法在钙钛矿氧化物LSCO中实现了氧缺陷的定量可控构筑。通过高精度实验表征技术对氧缺陷进行了定性和定量表征,证明了其氧缺陷浓度与球磨时间呈现良好的线性关系。在电催化析氧过程的表征中,该工作成功揭示了氧缺陷浓度变化引发的材料OER机理转化,表征出三种催化机制转变过程包括AEM-LOM、LOM-AEM以及AEM-LOM-AEM,并分别在两种机理下建立了氧缺陷浓度与OER活性的构效关系火山图。与此同时,密度泛函理论(DFT)计算进一步深度揭示了LSCO体系的浓度锁定效应。晶格中的Co活性位点在氧缺陷浓度增加时会出现浓度锁定效应,通过强p-d 耦合效应能够诱导离子间的 pπ电子补偿,使Co位点能够保持Co0状态进行高效析氧反应。而晶格氧的活性也随氧缺陷浓度呈火山型趋势,只有在适当的氧缺陷浓度下才变得足够活跃,从而促进OER反应过程。该工作所提出的独特的OER机制调控策略可以克服本征活性限制效应,增强高氧缺陷浓度下的 OER 活性。该工作为高效催化剂的开发提供了重要的见解,提出了更加具有普适性的催化剂设计策略。
这一成果近期发表在Science Advances 上,文章的第一作者是兰州大学博士研究生路旻、澳大利亚阿德莱德大学郑尧教授和兰州大学胡阳博士后,兰州大学席聘贤教授和香港理工大学黄勃龙教授为通讯作者。