综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

上海硅酸盐所在高能物理用石榴石闪烁陶瓷方向取得进展

日期: 2022-11-15
浏览次数: 9

来源于中科院上海硅酸盐所 ,作者中科院上硅所

闪烁体能够将高能射线或粒子转化为紫外或可见光波段发光,是人类探索微观物质起源和宏观宇宙演化的重要介质,充当着人类观察高能粒子的“眼睛”角色。闪烁体被广泛应用于科研、医疗、国土安全和工业等领域,各领域对闪烁材料的性能也提出了针对性要求(Jiang Li, et al. Chapt. 3. Scintillators. In: Processing of Ceramics: Breakthroughs in Optical Materials. Wiley, 2021)。铈离子掺杂镥铝石榴石(Ce:LuAG)闪烁陶瓷具有高密度、抗辐照能力强、高亮度、快衰减、制备成本相对较低等优点,有望成为新一代Shashlik采样量热计的探测材料。

近期,中国科学院上海硅酸盐研究所李江研究员带领透明与光功能陶瓷研究团队与捷克科学院物理研究所Martin Nikl博士和泰国国王科技大学Weerapong Chewpraditkul博士合作,对备受高能物理实验界关注的Ce:LuAG闪烁陶瓷进行组分设计和性能优化,获得进展。该团队基于“缺陷工程”的策略,在Ce:LuAG透明陶瓷中引入二价Ca2+,并系统研究了Ca2+掺杂浓度对陶瓷微观结构、光学质量和闪烁性能的影响。通过合适浓度的Ca2+共掺,有效诱导Ce4+快闪烁中心的形成,将Ce:LuAG陶瓷的闪烁快衰减分量(LY0.5μs/LY3μs)从79%提升至97%,是目前国际报道的最高值(Danyang Zhu, et al. J. Eur. Ceram. Soc., 2022, 42: 6075-6084)。

石榴石作为极具潜力的闪烁体基质材料,其独特优势在于晶格对不同阳离子取代的包容高度较大,在四面体、八面体、十二面体格位均可以实现多种离子取代,这使石榴石光功能材料从传统的二元石榴石逐渐发展为三元、四元甚至更多元,其性能也随着离子取代可以实现更丰富和灵活的调控,从而满足不同应用领域闪烁材料的性能需求。该团队对多组分石榴石闪烁陶瓷的发展历程、制备路径和优化思路进行了全面综述,并总结提出多组分石榴石闪烁陶瓷未来发展的前景方向(Danyang Zhu, et al. J. Adv. Ceram., 2022, doi: 10.1007/s40145-022-0660-9)。上述两篇论文的第一作者为上海硅酸盐所博士研究生朱丹阳,通讯作者为李江研究员。

 

相关链接:

https://doi.org/10.1002/9781119538806.ch3

https://doi.org/10.1016/j.jeurceramsoc.2022.06.023

https://doi.org/10.1007/s40145-022-0660-9

上海硅酸盐所在高能物理用石榴石闪烁陶瓷方向取得进展

上海硅酸盐所在高能物理用石榴石闪烁陶瓷方向取得进展

不同Ca2+掺杂浓度Ce,Ca:LuAG透明陶瓷的闪烁衰减曲线

Hot News / 相关推荐
  • 2025 - 04 - 10
    点击次数: 31
    自旋电子器件凭借低功耗、非易失性、超快读写等优势,已成为新一代信息技术的重要发展方向之一。单晶氧化物自旋霍尔材料因其突出的电荷-自旋转换能力,被认为是开发低功耗自旋器件的理想候选材料。然而,如何实现单晶氧化物自旋霍尔材料与硅基平台的异质集成,仍然面临着巨大挑战。中国科学院宁波材料技术与工程研究所柔性磁电材料与器件团队针对上述问题开展研究,提出了“混合转移外延” 集成策略。研究实现了在硅衬底上单晶氧...
  • 2025 - 04 - 10
    点击次数: 31
    来源:X-MOL自1911年超导现象发现以来,室温超导始终是凝聚态物理领域的终极目标之一。基于BCS理论,金属氢因极高的德拜温度与强电子-声子耦合,是潜在的高温乃至室温超导体,但其极端合成压力远超当前技术极限,因此科学家们转而探索基于化学预压缩效应的富氢化物。近年来,氢化物超导体的研究取得了重大突破。然而,二元氢化物的稳定压力与性能调控面临瓶颈,三元氢化物由于其化学多样性和结构可调性成为突破瓶颈的...
  • 2025 - 04 - 09
    点击次数: 99
    来源:中国科学院150年前,科幻大师凡尔纳预言,水将成为终极燃料。科学家一直努力发展能够将这一预言变为现实的各种可能的技术。其中包括通过阳光直接分解水获取氢气,这项被称为“光催化分解水”的技术属于低碳技术。目前,太阳能制氢主要有两种方式。一种是太阳能电池发电再电解水,其效率高但设备复杂且昂贵;另一种是太阳光直接光解水,即通过氧化钛等半导体材料在阳光下“一键分解”水分子。光解水自1972年被发现以来...
  • Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务