综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

SPT专栏|中科院过程工程所郑诗礼团队:钕铁硼废料清洁高效利用——选择性分离与回收硼

日期: 2024-04-24
浏览次数: 55

来源:环境人Environmentor


江西理工大学、中国科学院赣江创新研究院、中国科学院过程工程研究所近日在国际分离纯化领域著名期刊《Separation and Purification Technology》上发表了题为“Selective separation and recovery of boron from spent Nd-Fe-B magnets leaching solution”的研究论文。该文章第一作者为江西理工大学、中国科学院赣江赣江创新研究院博士研究生管新地,其导师为郑诗礼研究员、李平研究员、杨幼明教授;通讯作者为中国科学院赣江创新研究院、中国科学院过程工程研究所李平研究员。

从钕铁硼废料回收稀土过程中硼的累积会影响稀土萃取,并通过含硼废水造成环境污染。而硼是全球稀缺的战略资源,从钕铁硼废料选择性分离并回收硼具有重要意义。本研究提出了一种从钕铁硼废料浸出液中选择性分离和回收硼的新方法,采用2-乙基己醇(EHA)和2-乙基-1,3-己二醇(EHD)协同萃取硼,在最优条件(30% EHA-20% EHD-50% SK,O/A相比1:1,pH 3.3,10 min)下,单级萃取率达96.0%,稀土损失仅1.2%。机理研究发现,部分硼酸与EHD的羟基络合形成稳定的六元环配合物,而另一部分硼酸与EHA和EHD同时络合形成含六元环的线性配合物。以0.4 mol/L NaOH为反萃剂,在O/A相比1:1,10 min的条件下,单级萃取率达91.5%。采用二级逆流萃取-二级逆流反萃-蒸发结晶工艺,萃取率和反萃率分别高达99.9%和99.8%,反萃液经蒸发结晶制备得到纯度超99%的五水硼砂产品。萃余液硼含量仅为~5 mg/L,通过稀土回收工艺可进一步降低至排放标准2 mg/L以下,实现硼的达标排放。这项工作为钕铁硼废料浸出液中硼的选择性分离和回收提供了一种新方法,消除硼对稀土萃取和环境的不利影响,同时实现硼资源高效循环利用。

稀土是重要的战略金属,近年来稀土资源的回收利用日益受到全球的关注。由于开采保护政策,越来越多研究关注从稀土二次资源中回收稀土。其中占比最高的是钕铁硼废料,占全球稀土总产量的22%。而钕铁硼废料含有约25-35%稀土,约60-70%铁,约1%硼。目前,关于钕铁硼废料中稀土和铁资源的回收利用已有大量的研究,硼资源却很少受到关注。仅中国每年就有约648吨钕铁硼废料中的硼资源没有被回收利用。从钕铁硼废料回收稀土过程中,硼浓度约1.5-3.5 g/L,硼在萃取槽中的长期积累会对稀土萃取过程产生不利影响。此外,硼的超标排放会污染地下水,破坏生态环境。硼是一种重要的战略资源,在萃取稀土前选择性分离和回收硼是十分必要的。考虑到钕铁硼废料浸出液呈酸性体系以及其由稀土、铁、铝、硼等组成,溶剂萃取是在尽量不损失稀土的情况下选择性回收硼的最可行方法。目前,2-乙基己醇(EHA)和2-乙基-1,3-己二醇(EHD)被用于从盐湖卤水和地下卤水回收硼,具有优异的硼萃取能力。然而,很少有研究关注钕铁硼废料中硼的萃取分离和回收。因此,本文提出用EHA和EHD协同萃取硼,并制备五水硼砂产品回收硼。该方法为钕铁硼废料硼资源的分离和回收提供了新的策略,缓解硼资源紧张,减少硼对环境的污染。

在最佳萃取条件(pH=3.3,EHA 30%-EHD 20%-SK 50%,萃取时间10 min,O/A相比1:1,反应温度298 K)下,考察EHA-EHD萃取剂对稀土(Nd、Pr、Ce、Gd、Dy)和杂质(Al、Fe)的选择性(图1)。观察到96.0%的硼被选择性萃取,而稀土和杂质的总量变化很小,稀土(Nd、Pr、Ce、Gd、Dy)总损失为1.2%,杂质(Al、Fe)总损失为2.4%。其中,少量的稀土损失主要归因于物理夹带,这部分稀土可在随后的反萃过程中回收。EHA-EHD萃取剂对硼的最大负载容量测定为0.99 mol/L H3BO3,具有高选择性和优异的萃取性能。

采用Raman(图2A)和FT-IR(图2B)研究EHA-EHD对硼的萃取机理。Raman分析发现,在萃取前,876 cm-1处有一处明显的B(OH)3指纹峰,在萃取后B(OH)3指纹峰消失,说明溶液中硼主要以硼酸形式存在。FT-IR分析发现,萃取后,在664 cm-1处出现新的特征峰,对应于络合物中BO3的对称变形振动。在1170 cm-1和1270 cm-1处的新峰归因于硼酸酯中的C-O和B-O-H键。在1335 cm-1和1417 cm-1处出现了两个新峰,对应硼酸酯中B-O键的伸缩振动。萃取后,OH拉伸振动吸收峰从3337 cm-1位移至3349 cm-1,同时强度减弱,表明OH官能团参与了酯化反应[61]。这些结果表明,萃取剂的OH官能团与硼酸分子通过酯化反应生成硼酸酯,这一机理在NMR分析中得到进一步验证。

针对可能发生的萃取反应形式,进行DFT计算(图3)。EHA萃取硼酸1:1和2:1络合的ΔG值分别为-0.1 kcal/mol和-1.0 kcal/mol,说明EHA与硼酸反应形成的线性配合物不稳定,不是主要的萃取形式。EHD和EHA-EHD萃取硼酸的ΔG值分别为-8.9 kcal/mol和-8.1 kcal/mol。结合斜率分析结果发现的1个硼酸分子与约0.5个EHA分子、约1个EHD分子络合,可知萃取主要有两种反应形式:(1)EHD与硼酸1:1萃取形成稳定的六元环配合物,是最稳定的产物;(2)EHD与硼酸结合形成六元环配合物,环上剩余的羟基与EHA配位形成线性配合物。

分别采用EHA-EHD萃取剂和0.4 mol/L NaOH反萃剂,经二级逆流萃取与二级逆流反萃后,萃取率和反萃率分别高达99.9%和99.8%,萃余液中硼的浓度显著降低至~5 mg/L。将反萃液pH调节至~9后,进行蒸发结晶,产品的XRD图谱(图4A)显示为纯的Na2B4O7·5H2O物相,SEM图像(图4B)表明五水硼砂产品的晶体主要呈长条形。采用中华人民共和国国家标准(GB/T 537-2009)的方法测定五水硼砂产品的纯度,发现其纯度超过99%。 

基于以上研究结果,本文提出一种从钕铁硼废料浸出液中选择性分离和回收硼的新工艺(图5)。首先,经过二级逆流萃取工艺,溶液中的99.9%硼进入有机相。然后,采用二级逆流反萃工艺可从负载硼有机相中选择性分离回收99.8%的硼到反萃液中,反萃得到的再生有机相循环回用。最后,通过蒸发结晶制备得到五水硼砂产品。据估计,采用该新工艺每年可从中国钕铁硼废料中回收生产约4000吨五水硼砂产品。此外,通过稀土回收工艺,硼浓度可进一步由~5 mg/L降至2 mg/L以下,达到中国工业废水中硼的排放标准。与现有工艺相比,该工艺高选择性分离硼,消除硼对后续稀土萃取工艺的不利影响,提高生产效率,减少环境污染排放,节约环境治理成本。而且,新增的五水硼砂产品可以缓解硼资源的短缺,丰富企业生产线,提高经济效益,具有良好的工业应用前景。

本文提出了一种新的钕铁硼废料处理方法,通过萃取-反萃-蒸发结晶工艺,实现了钕铁硼废料浸出液中硼的选择性分离和回收。EHA-EHD萃取剂可选择性萃取硼,硼的最大负载量为0.99 mol/L H3BO3。溶液中的硼以硼酸的形式存在,萃取机理涉及EHA和EHD中的OH基团与硼酸配位形成两种含六元环的配位化合物。经NaOH反萃和蒸发结晶后,可制备纯度超99%的五水硼砂产品。通过稀土回收工艺,可将萃余液中的硼浓度降低到工业废水排放标准以下。与现有钕铁硼废料稀土回收工艺相比,该工艺有效消除硼对稀土萃取的不利影响,可得到五水硼砂产品,有效提高生产效率和经济效益。



Hot News / 相关推荐
  • 2024 - 10 - 18
    点击次数: 0
    来源:北京理工大学近日,北京理工大学物理学院周家东教授、刘瑞斌教授、郑守君副教授和黄翔葳老师在化学化工领域顶级期刊《Chemical Society Reviews》(IF=""40.4)上发表题为“Emerging"" Two-Dimensional Ferromagnetic Semiconductors”的前沿综述文章。二维铁磁半导体兼具本征铁磁性和半...
  • 2024 - 10 - 18
    点击次数: 1
    原创 包头日报在包钢(集团)建厂70周年之际,10月15日,北方稀土绿色冶炼升级改造项目一期工程建成投产,标志着全球最大的稀土原料生产基地正式投入运行。自治区党委常委、市委书记丁绣峰启动北方稀土绿色冶炼升级改造项目一期工程。市委副书记、代市长孟庆维,包钢(集团)公司党委书记、董事长孟繁英致辞。中国稀土学会理事长李波,自治区国资委党委委员、副主任吴大鹏,中国稀土行业协会秘书长杨文浩出席。北...
  • 2024 - 10 - 17
    点击次数: 99
    来源:中国科学院物理研究所电子平带由于其显著增强的电子关联,在新奇量子态和低能激发的产生方面有着巨大潜力。因此,近年来具有平带特性的材料备受关注,相关研究主要集中在几何阻挫晶格体系,如魔角石墨烯和Kagome材料等。在非几何阻挫材料中,电子平带的出现则体现出了更多的可能性。基于d电子材料的多轨道特性及其轨道选择性,大家期望在d电子系统中探索平带及其相关的重费米子态行为。例如,铁基超导体由于Fe 3...
  • Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务