综合新闻 News
联系我们
  • 客服服务电话:021-64321087
  • 商业服务电话:13918059423
  • 技术服务电话:13918059423
  • 联系人:崔老师 
  • 服务邮箱:shxtb@163.com
  • 地址:上海市徐汇区桂林路100号8号楼107室

西安交大科研团队在多光学形态长寿命磷光光子晶体领域取得重要进展

日期: 2024-09-09
浏览次数: 91
来源:西安交通大学


将光致发光(PL)尤其是长寿命室温磷光(RTP)现象集成到周期性亚微米结构中以构建多光学形态光子晶体(PC)是目前光学功能材料及相关器件重要发展趋势,但这种集成极具挑战性。这一方面是由于RTP的实现需要刚性基质以稳定三重态激子并抑制非辐射跃迁,但这些基质往往不具备周期性结构,不能对光产生选择性反射。另一方面,由于光子晶体材料和RTP材料制备方法差异很大且与光相互作用的物理机制没有关联性,使得发光单元与光子晶体阵列之间的兼容性和可组合性显著降低。
针对这一问题,西安交通大学物理学院研究人员提出了一种新颖的通用性策略来制备具有三重光学形态的光子晶体(三态PCs)。通过高温煅烧内部封装有荧光碳点(CDs)的SiO2纳米颗粒,形成具有规则形貌的单分散磷光SiO2纳米球(RTP-CDs@SiO2)并自组装成三态PCs。该PCs的三种光学模式在不同光源环境刺激下可以无缝切换,即在日光下具有虹彩结构色、紫外光照射时发出明亮的PL以及关闭紫外光后产生时间依赖的RTP。研究表明,高温煅烧产生磷光的内在物理机制是由于强C-Si共价键网络的形成进而稳定了激发三重态。进一步发现,磷光不依赖于所包裹CDs的表面缺陷类型或杂原子掺杂,因此证明所提出的制备方法具有通用性。此外,研究人员在该材料的基础上进一步实现了热响应三态光子凝胶。通过简单调整凝胶的环境温度(8oC-43oC),可以巧妙地将物理发光(结构颜色和透光率)与化学发光(PL和RTP)相联立,并且这些光信号在不同光传播模式下表现出互补偿特性。最后,研究人员展示了三态光子凝胶在可回收智能窗和多维信息加密等领域的应用场景,表明该材料在未来新型光学器件设计方面的广阔的应用前景。这一工作为物理色(结构色)和化学色(PL和RTP)的有机整合和系统集成开辟了新的途径,其丰富的光学性质有助于相关材料及光学器件的设计、研究向更高水平发展。
该成果近日发表在《先进功能材料》(Advanced Functional Materials)上,西安交通大学物理学院为唯一通讯单位,文章第一作者是西安交通大学物理学院博士生王昌兴,西安交通大学物理学院卢学刚教授、杨森教授为论文通讯作者。该项研究得到了国家重点研发计划项目,国家自然科学基金和陕西省自然科学基金的支持。
论文链接:https://doi.org/10.1002/adfm.202408632



Hot News / 相关推荐
  • 2025 - 04 - 08
    点击次数: 98
    来源:上海大学理学院近日,理学院曹世勋教授科研团队在量子相变研究领域取得最新国际合作研究成果,相关研究论文“Observation of the Magnonic Dicke Superradiant Phase Transition”发表在国际顶级期刊《Science Advances》上。该研究由曹世勋教授(共同通讯作者)联合美国莱斯大学Junichiro Kono教授(共同通讯作者)国际合作...
  • 2025 - 04 - 08
    点击次数: 101
    来源:北京大学化学与分子工程学院按照发光机理,稀土配合物主要分为f-f跃迁发光和d-f跃迁发光两大类,分别对应稀土离子的电子从4f激发态能级跃迁至4f基态能级和5d激发态能级跃迁至4f基态能级。近年来,d-f跃迁发光的稀土Ce(III)、Eu(II)配合物因其激子利用率高达100%、发光颜色可调、激发态寿命较短等特点,在照明、显示、成像等领域显示出广阔的应用前景。尽管d-f跃迁发光稀土配合物中电子...
  • 2025 - 04 - 07
    点击次数: 79
    来源:西安交通大学电介质电容器具有非常高的功率密度和超快的充放电速率被广泛应用于混合动力汽车、脉冲电源系统等众多领域。但是其低能量存储密度(Wrec)及低充放电效率(h)严重阻碍了它们在电子器件小型化、轻量化和集成化方面的发展。NaNbO3(NN)基陶瓷材料,作为无铅反铁电体系的代表,由于其宽带隙(~ 3.45 eV)、高极化强度(~ 40 mC·cm-2)和小体积密度(~ 4.55 g...
  • 2025 - 04 - 07
    点击次数: 120
    激光晶体材料是激光技术发展的核心和基础之一,其光谱性能由激活离子及基质晶体格位结构决定。长期以来,激光晶体材料的创制遵循激活离子与基质晶体“交叉组合”的发展模式,并由此产生了数百种激光晶体。然而,依靠这种模式所能获得的晶体总量有限,无法满足前沿激光技术发展对激光晶体不断提出的新需求。因此,激光晶体材料迫切需要开拓新的发展模式,为激光技术的创新发展提供基础和动力。阅读原文
  • Copyright ©Copyright 2018  2020 上海市稀土协会 All Rights Reserved 沪ICP备2020034223号-1  沪公网安备 31010402010140号
    主办单位:上海市稀土协会 指导单位:上海市稀土材料开发应用办公室 承办单位:上海稀土产业促进中心 
    犀牛云提供企业云服务